Correlation of Macroscopic and Microscopic Properties of Tungsten Doped Nanocrystalline Diamond Coatings

25thTarget Fabrication Specialists Meeting

Tom Braun, Annie Kritcher, Tian Lee, Warren L. York, Mike Nielsen, Wenyu Sun, Chantel Aracne-Ruddle, Sean M. Hayes, Monika. M. Biener, Leonardus Bimo Bayu Aji, Juergen Biener from LLNL

Tobias Fehrenbach and Christoph Wild from Diamond Materials

Rajeev K Rai and Eric A. Stach from UPenn

Wes Nieveen and Jack Li from EAG

Juergen Biener June 28, 2024

Correlating and Tuning Macroscopic and Microscopic Properties Relevant for Target Fabrication and Performance

Density – W doping correlation of W-NCD suggests grain size refinement with increasing W concentration

Macroscopic properties of W-NCD seem to be dominated by graphitic carbon content

- IR transparence increases with increasing resistance
- IR Absorption coefficient increases with increasing [W]

TEM confirms well-defined nanoscale grain structure

- Well defined crystalline sub-100 nm diamond grains
- Large elongated regions with similar grain orientation (texture)

Lawrence Livermore National Laboratory LLNL-PRES-LLNL-PRES-867746

Diffraction-based TEM techniques confirm nanoscale grain structure and the presence of texture

Growth direction 001 101

New process 0.43 at.% W

Scanning Precession Electron Diffraction (SPED)

Tony Li, LLNL

- Elongated grains in growth direction
- Volume on W-NCD dominated by sub-100 nm grains with a peak around 10 nm
- Low angle grain boundaries seem to dominate (associated with lower local density)
- Analysis currently limited by the thickness of available TEM lamellas

Nanoscale W precipitates observed in the W-NCD layer

KC952 (0.56 at.% W) / old process

HAADF STEM / UPenn

- Grain size of NCD > grain size of WNCD
- Elongated grains in grow direction, equiaxed grains perpendicular to growth direction
- Small (< 5 nm) WC nanoparticles in doped region

Lawrence Livermore National Laboratory

Nonuniform tungsten distribution: Banding and tungsten carbide nanoprecipitates

KC1112 KC1063 duplicate (plus improved agitation) New process 0.43 at.% W

HAADF STEM (UPenn): Camera Length = 2 cm Contrast dominated to Rutherford scattering

Lawrence Livermore National Laboratory

- Banding reflects local variation of WC particle density (shell agitation related)
- The WC nanoparticles have a diameter of 1-3 nm
- WC lattice fringe spacing ~ 2.4 Å
 - > Consistent with 111 plane spacing of cubic WC (4.39 Å/ $\sqrt{3}$ = 2.53Å)
 - But can not rule out coexistence of orthorhombic W₂C phase: (200) plane spacing 2.36 Å

XRD confirms the presence of WC precipitates and texture

XRD (EAG)

- Weak 220 texture (fast growth direction): Old process seems to result in a slightly higher texture than new process
- ~25% of the incorporated W is in the form of small WC particles embedded in the diamond matrix

Higher sp²-C concentration in bright (WC-rich) bands

• Banding Reflects randomization during coating the WNCD layer

04

• Banding corresponds to x3 variation in local W doping

02

• 2x higher sp²-C concentration in bright (WC-rich) bands

0.3

- Modulation of density and non-thermal x-ray absorption
- Effect on thickness distribution measurement by optical reflection spectroscopy is currently investigated

0.5 µm

Grain boundaries associated with lower density

Hydrogen concentration increases with increasing W concentration

(Secondary Ion Mass Spectroscopy, SIMS)

Sample	[W] XRF at.%	[H] SIMS [at.%]	Corrected [H] (x3.5/1.7) [at.%]	N concentration [ppm]
flat condor 061	0	1.71	3.5	204
S185	0	1.25	2.6	56
KC1213	0.33	1.82	3.7	28
KC1219	0.68	2.22	4.6	39

• Hydrogen concentration increases with increasing W concentration (further decreasing density)

[N] << [H], and [N] of W-NCD (flat) < [N] of NCD (shell)

National Laboratory

3.55

Characteristic length scales associated with the NCD/WNCD layers range from 0.5 nm to one micron

Summary NCD/WNCD grain structure

- Well defined 10-20 nm grains, smaller in WNCD
- Elongated grains with weak 110 texture in grow direction,
- Grain boundaries have a lower density
 - Iow angle grain boundaries
 - > [H] ~2.5 at.% in NCD vs 3.7-4.6 at.% in WNCD
 - [sp²-C] in NCD < [sp²-C] in WNCD; increases with increasing [W]
- ~25% of the incorporated W is in the form of small 1-3 nm WC particles embedded in the diamond matrix
- WC lattice fringe spacing ~ 2.4 Å consistent with cubic WC
- Banding reflects radial variation of WC particle density (x3 variation in local W doping)
- Old production batches seem to have a significantly higher sp²/sp³ ratio
 Consistent with observation of sp²–C fringes and lower resistivity/IR transparency

Supplementary Information

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Grain structure KC789 / undoped layer Parallel to growth direction

Virtual bright-field image (diffraction contrast)

TEM grain orientation map Swanee Shin / LLNL

Elongated, several hundred nm long regions with similar grain orientation

LLNL-PRES-LLNL-PRES-867746

Tungsten carbide: phase identification

Whole Pattern Fitting (WPF) was used to attempt to quantify the W carbide phases with respect to the diamond

Presence of multiple (disordered) WC phases necessary to explain the broad WC XRD peak

Construction of realistic unshocked NCD MD samples

Academic Collaboration Team (ACT) collaboration with Prof. Ivan Oleynik / Dr. Joe Gonzalez from the University of South Florida

200 million atoms, after the nucleation/decompression protocol Average grain size ~ 15 nm diameter

Lawrence Livermore National Laboratory

KC1317 doping gradient / cross-sectional SEM/EDS

Lawrence Livermore National Laboratory

Characterization data enable realistic NCD MD models to study the shock response

Academic Collaboration Team (ACT) collaboration with Prof. Ivan Oleynik / Dr. Joe Gonzalez from the University of South Florida

Ripple in the shock front imprinted by grain orientation

Grain boundary volume

Assumptions:

- 1) Core of each grain has full single crystal diamond density of 3.5 g/cc
- 2) Grain boundary is associated with graphite with a local density of 2.2 g/cc

Data:

- 1) Measured density of NCD is 3.3 g/cc
- Grain size distribution shows a peak at around 10 nm (TEM images and OIM software)

Conclusions:

- Explaining the measured NCD density of 3.3 g/cc requires that the graphitic grain boundary layer occupies ~10% of the volume: 0.88 x 3.5 g/cc + 0.12 x 2.2 g/cc = 3.34 g/cc
- 2) With a total grain boundary length of 200 um⁻¹ the thickness of the grain boundary layer needs to be 0.5 nm to explain the measured density of 3.3 g/cc

Area per 10 nm grain:	A _{10 nm} = 100 nm ²
Area grain boundary:	$A_{\rm G}$ = 2 x 10 x 0.5 nm ² = 10 nm ²
Area core of a grain:	$A_c = 9.5 \text{ x} 9.5 \text{ nm}^2 = 90.25 \text{ nm}^2$

Total grain boundary length per $um^2 = 100 \times 1 \text{ um} + 100 \times 1 \text{ um} = 200 \text{ um}^{-1}$

W content: Secondary Ion Mass Spectroscopy (SIMS)

Good correlation [W] SIMS and XRF, but [W] SIMS factor 3 too small

Nitrogen content: Secondary Ion Mass Spectroscopy (SIMS)

SIMS (Eurofins)

LLNL-PRES-LLNL-PI

Lawrence Livermore National Laboratory ullet

Sample	[W] XRF at.%	[N] (atoms/cc)	[N] (ppm)
flat condor 061	0	3.6E+19	204
S185	0	1E+19	56
KC1213	0.33	5E+18	28
KC1219	0.68	7E+18	39

[N] << [H], and [N] of W-NCD (flat) < [N] of NCD (shell) Shells and flats differ a lot!